An Ensemble Method to Produce High-Quality Word Embeddings
نویسندگان
چکیده
A currently successful approach to computational semantics is to represent words as embeddings in a machine-learned vector space. We present an ensemble method that combines embeddings produced by GloVe (Pennington et al., 2014) and word2vec (Mikolov et al., 2013) with structured knowledge from the semantic networks ConceptNet (Speer and Havasi, 2012) and PPDB (Ganitkevitch et al., 2013), merging their information into a common representation with a large, multilingual vocabulary. The embeddings it produces achieve state-of-the-art performance on many word-similarity evaluations. Its score of ρ = .596 on an evaluation of rare words (Luong et al., 2013) is 16% higher than the previous best known system.
منابع مشابه
Co-learning of Word Representations and Morpheme Representations
The techniques of using neural networks to learn distributed word representations (i.e., word embeddings) have been used to solve a variety of natural language processing tasks. The recently proposed methods, such as CBOW and Skip-gram, have demonstrated their effectiveness in learning word embeddings based on context information such that the obtained word embeddings can capture both semantic ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملUsing word2vec for Bilateral Translation
Word and phrase tables are key inputs to machine translations, but costly to produce. New unsupervised learning methods represent words and phrases in a high-dimensional vector space, and these monolingual embeddings have been shown to encode syntactic and semantic relationships between language elements. The information captured by these embeddings can be exploited for bilingual translation by...
متن کاملLearning Word Meta-Embeddings by Using Ensembles of Embedding Sets
Word embeddings – distributed representations of words – in deep learning are beneficial for many tasks in natural language processing (NLP). However, different embedding sets vary greatly in quality and characteristics of the captured semantics. Instead of relying on a more advanced algorithm for embedding learning, this paper proposes an ensemble approach of combining different public embeddi...
متن کاملParameter Free Hierarchical Graph-Based Clustering for Analyzing Continuous Word Embeddings
Word embeddings are high-dimensional vector representations of words and are thus difficult to interpret. In order to deal with this, we introduce an unsupervised parameter free method for creating a hierarchical graphical clustering of the full ensemble of word vectors and show that this structure is a geometrically meaningful representation of the original relations between the words. This ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1604.01692 شماره
صفحات -
تاریخ انتشار 2016